力のモーメントの計算
問題
以下の図に力$\vec{F}$が作用した場合の力のモーメント$\vec{M}$を計算し、力のモーメントの大きさ$|\vec{M}|$を求めよ。但し、棒の質量は無視できるものとする。
(1) 棒の長さ$x, \ $棒と作用する力は直交する場合。
(2) 棒の長さ$x, \ $棒と作用する力のなす角は$\theta$の場合。
(3) 棒の長さ$r, \ $作用する力$\vec{F}$の$x,y$成分を$F_x ,\ F_y $とする場合。
解答
(1)
位置ベクトル$\vec{r}_1$を図のように設定すると、
位置ベクトルは
\begin{eqnarray*}
\vec{r}_{1} &=&
\begin{pmatrix}
x \\
0 \\
0 \\
\end{pmatrix} \\
\end{eqnarray*}
である。
また、作用する力は
\begin{eqnarray*}
\vec{F} &=&
\begin{pmatrix}
0 \\
F \\
0 \\
\end{pmatrix} \\
\end{eqnarray*}
である。
従って、力のモーメント$\vec{M}_1$は
\begin{eqnarray*}
\vec{M}_{1} &=& \vec{r}_{1} \times \vec{F} \\
\\
&=&
\begin{pmatrix}
x \\
0 \\
0 \\
\end{pmatrix} \times
\begin{pmatrix}
0\\
F\\
0\\
\end{pmatrix} \\
\\
&=&
\begin{pmatrix}
0 \cdot 0 -0 \cdot F \\
0 \cdot 0 – x \cdot 0 \\
x \cdot F – 0 \cdot 0 \\
\end{pmatrix}\\
\\
&=&
\begin{pmatrix}
0 \\
0 \\
xF \\
\end{pmatrix}\\
\end{eqnarray*}
となり、
\begin{eqnarray*}
| \vec{M}_{1} | &=& \sqrt{0^2 + 0^2 + (xF)^2} \\
\\
&=& xF
\end{eqnarray*}
となる。
(2)
位置ベクトル$\vec{r}_2$を図のように設定すると、
位置ベクトルは
\begin{eqnarray*}
\vec{r}_{2} &=&
\begin{pmatrix}
x \\
0 \\
0 \\
\end{pmatrix} \\
\end{eqnarray*}
である。
また、作用する力は
\begin{eqnarray*}
\vec{F} &=&
\begin{pmatrix}
F \cos \theta \\
F \sin \theta \\
0 \\
\end{pmatrix} \\
\end{eqnarray*}
である。
従って、力のモーメント$\vec{M}_2$は
\begin{eqnarray*}
\vec{M}_{2} &=& \vec{r}_{2} \times \vec{F} \\
\\
&=&
\begin{pmatrix}
x \\
0 \\
0 \\
\end{pmatrix} \times
\begin{pmatrix}
F \cos \theta \\
F \sin \theta \\
0\\
\end{pmatrix} \\
\\
&=&
\begin{pmatrix}
0 \cdot 0 -0 \cdot F \sin \theta \\
0 \cdot F \cos \theta – x \cdot 0 \\
x \cdot F \sin \theta – 0 \cdot F \cos \theta \\
\end{pmatrix}\\
\\
&=&
\begin{pmatrix}
0 \\
0 \\
xF \sin \theta \\
\end{pmatrix}\\
\end{eqnarray*}
となり、
\begin{eqnarray*}
| \vec{M}_{2} | &=& \sqrt{0^2 + 0^2 + (xF \sin \theta)^2} \\
\\
&=& xF \sin \theta
\end{eqnarray*}
となる。
(3)
位置ベクトル$\vec{r}_3$を図のように設定すると、
位置ベクトルは
\begin{eqnarray*}
\vec{r}_{3} &=&
\begin{pmatrix}
x \\
y \\
0 \\
\end{pmatrix} \\
\end{eqnarray*}
である。
また、作用する力は
\begin{eqnarray*}
\vec{F} &=&
\begin{pmatrix}
F_x \\
F_y \\
0 \\
\end{pmatrix} \\
\end{eqnarray*}
である。
従って、力のモーメント$\vec{M}_3$は
\begin{eqnarray*}
\vec{M}_{3} &=& \vec{r}_{3} \times \vec{F} \\
\\
&=&
\begin{pmatrix}
x \\
y \\
0 \\
\end{pmatrix} \times
\begin{pmatrix}
F_x \\
F_y \\
0\\
\end{pmatrix} \\
\\
&=&
\begin{pmatrix}
y \cdot 0 -0 \cdot F_y \\
0 \cdot F_x – x \cdot 0 \\
x \cdot F_y – y \cdot F_x \\
\end{pmatrix}\\
\\
&=&
\begin{pmatrix}
0 \\
0 \\
xF_y – yF_x \\
\end{pmatrix}\\
\end{eqnarray*}
となり、
\begin{eqnarray*}
| \vec{M}_{3} | &=& \sqrt{0^2 + 0^2 + (xF_y – yF_x )^2} \\
\\
&=& xF_y – yF_x
\end{eqnarray*}
となる。
ad
関連記事
-
-
物体の質量が変化する運動
問題 滑らかな水平面上で後方に単位時間当たり$m_0$の物質を噴出しながら 運動する物体があ
-
-
等速円運動の位置、速度、加速度
問題 半径$r_0$、速さ$v_0$で等速円運動をしている物体について 以下の問いに答えよ。
-
-
斜面を滑り下りる運動
問題 水平面をなす角$\theta$の粗い斜面上の点$\mathrm{A}$から物体を初速$v
-
-
地球の質量と平均密度
問題 地球の質量と平均密度を万有引力の法則を用いて見積もるとする。 地球の半径を$R_\ma
-
-
一様に帯電した球が作る電場
問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。以下の問いに答えよ。
-
-
マクローリン展開の計算
問題 次の関数$f(x)$をマクローリン級数に展開せよ。 (1) $f(x)=\sin
-
-
物体が滑り出さない条件
問題 粗い水平面上に置かれた質量$m$の物体に水平と$\alpha$の角をなす方向から 力$
ad
- PREV
- 単振動の変位と速度、加速度の関係
- NEXT
- ド・モアブルの定理の導出