力のモーメントの計算

公開日: : 力学, 物理学 ,

問題

以下の図に力$\vec{F}$が作用した場合の力のモーメント$\vec{M}$を計算し、力のモーメントの大きさ$|\vec{M}|$を求めよ。但し、棒の質量は無視できるものとする。

(1) 棒の長さ$x, \ $棒と作用する力は直交する場合。

(2) 棒の長さ$x, \ $棒と作用する力のなす角は$\theta$の場合。

(3) 棒の長さ$r, \ $作用する力$\vec{F}$の$x,y$成分を$F_x ,\ F_y $とする場合。


解答

(1)
位置ベクトル$\vec{r}_1$を図のように設定すると、

位置ベクトルは
\begin{eqnarray*}
\vec{r}_{1} &=&
\begin{pmatrix}
x \\
0 \\
0 \\
\end{pmatrix} \\
\end{eqnarray*}

である。
また、作用する力は

\begin{eqnarray*}
\vec{F} &=&
\begin{pmatrix}
0 \\
F \\
0 \\
\end{pmatrix} \\
\end{eqnarray*}
である。

従って、力のモーメント$\vec{M}_1$は

\begin{eqnarray*}
\vec{M}_{1} &=& \vec{r}_{1} \times \vec{F} \\
\\
&=&
\begin{pmatrix}
x \\
0 \\
0 \\
\end{pmatrix} \times
\begin{pmatrix}
0\\
F\\
0\\
\end{pmatrix} \\
\\
&=&
\begin{pmatrix}
0 \cdot 0 -0 \cdot F \\
0 \cdot 0 – x \cdot 0 \\
x \cdot F – 0 \cdot 0 \\
\end{pmatrix}\\
\\
&=&
\begin{pmatrix}
0 \\
0 \\
xF \\
\end{pmatrix}\\
\end{eqnarray*}

となり、

\begin{eqnarray*}
| \vec{M}_{1} | &=& \sqrt{0^2 + 0^2 + (xF)^2} \\
\\
&=& xF
\end{eqnarray*}

となる。

(2)
位置ベクトル$\vec{r}_2$を図のように設定すると、

位置ベクトルは
\begin{eqnarray*}
\vec{r}_{2} &=&
\begin{pmatrix}
x \\
0 \\
0 \\
\end{pmatrix} \\
\end{eqnarray*}

である。
また、作用する力は

\begin{eqnarray*}
\vec{F} &=&
\begin{pmatrix}
F \cos \theta \\
F \sin \theta \\
0 \\
\end{pmatrix} \\
\end{eqnarray*}
である。

従って、力のモーメント$\vec{M}_2$は

\begin{eqnarray*}
\vec{M}_{2} &=& \vec{r}_{2} \times \vec{F} \\
\\
&=&
\begin{pmatrix}
x \\
0 \\
0 \\
\end{pmatrix} \times
\begin{pmatrix}
F \cos \theta \\
F \sin \theta \\
0\\
\end{pmatrix} \\
\\
&=&
\begin{pmatrix}
0 \cdot 0 -0 \cdot F \sin \theta \\
0 \cdot F \cos \theta – x \cdot 0 \\
x \cdot F \sin \theta – 0 \cdot F \cos \theta \\
\end{pmatrix}\\
\\
&=&
\begin{pmatrix}
0 \\
0 \\
xF \sin \theta \\
\end{pmatrix}\\
\end{eqnarray*}

となり、

\begin{eqnarray*}
| \vec{M}_{2} | &=& \sqrt{0^2 + 0^2 + (xF \sin \theta)^2} \\
\\
&=& xF \sin \theta
\end{eqnarray*}

となる。

(3)
位置ベクトル$\vec{r}_3$を図のように設定すると、

位置ベクトルは
\begin{eqnarray*}
\vec{r}_{3} &=&
\begin{pmatrix}
x \\
y \\
0 \\
\end{pmatrix} \\
\end{eqnarray*}

である。
また、作用する力は

\begin{eqnarray*}
\vec{F} &=&
\begin{pmatrix}
F_x \\
F_y \\
0 \\
\end{pmatrix} \\
\end{eqnarray*}
である。

従って、力のモーメント$\vec{M}_3$は

\begin{eqnarray*}
\vec{M}_{3} &=& \vec{r}_{3} \times \vec{F} \\
\\
&=&
\begin{pmatrix}
x \\
y \\
0 \\
\end{pmatrix} \times
\begin{pmatrix}
F_x \\
F_y \\
0\\
\end{pmatrix} \\
\\
&=&
\begin{pmatrix}
y \cdot 0 -0 \cdot F_y \\
0 \cdot F_x – x \cdot 0 \\
x \cdot F_y – y \cdot F_x \\
\end{pmatrix}\\
\\
&=&
\begin{pmatrix}
0 \\
0 \\
xF_y – yF_x \\
\end{pmatrix}\\
\end{eqnarray*}

となり、

\begin{eqnarray*}
| \vec{M}_{3} | &=& \sqrt{0^2 + 0^2 + (xF_y – yF_x )^2} \\
\\
&=& xF_y – yF_x
\end{eqnarray*}

となる。

ad

関連記事

単振動の変位、速度、加速度

問題 なめらかな水平面上に壁からばねが取り付けれられている。 ばねは自然長の状態で静止してい

記事を読む

固定された滑車の運動

問題 天井に固定された滑車に2つの物体がひもでつながれて運動している。 物体の質量をそれぞれ

記事を読む

摩擦力のある物体の運動

問題 粗い水平面上に置かれた質量$m$の物体がある。 この物体に初速度$v_0$を与えて

記事を読む

単振動の微分方程式

問題 単振動の微分方程式 \begin{align*} m\frac{\diff^2 x}

記事を読む

物体が滑り出さない条件

問題 粗い水平面上に置かれた質量$m$の物体に水平と$\alpha$の角をなす方向から 力$

記事を読む

極座標の速度

問題 極座標の平面を考える。 速度$\vec{v}$において$r$方向の速度$v_r$と$\

記事を読む

単振り子のエネルギー保存

問題 質量$m$の物体が長さ$l$の糸につるされている。 この物体の単振り子運動においてエネ

記事を読む

2球の正面衝突

問題 2球の正面衝突を考える。 この衝突において運動量が保持することを運動方程式を用いて

記事を読む

斜面を滑り降りる運動

問題 摩擦がある水平面となす角 $\theta$ の斜面を質量 $m$ の物体がすべり下り

記事を読む

斜衝突の運動

問題 質量が等しい2つの質点A, Bがある。 静止しているBに速度$v_0$でAが衝突し、そ

記事を読む

ad

Message

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

ad

ガンマ関数

問題 ガンマ関数$\Gamma (z)$は \begin{eq

偏微分の関係式の導出

問題 以下の関係式を導出せよ。 (1) $\display

球の表面に一様に帯電した球が作る電場

問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の

一様に帯電した球が作る電場

問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に

→もっと見る

PAGE TOP ↑