単振動の変位と速度、加速度の関係

問題

単振動の変位 $y(t)$ が

\begin{eqnarray*}
y(t) = A \sin (\omega t)
\end{eqnarray*}

と表されているとき以下の問に答えよ。

(1) 速度 $v$ と変位 $y$ の関係を表わせ。

(2) 加速度 $a$ と変位 $y$ の関係を表わせ。

(3) 単振動は運動方程式 $\ddot{y}+\omega ^2 y =0$ を満たすことを示せ。


解答

(1)
速度$v$は

\begin{eqnarray*}
v = \frac{\diff y}{\diff t} &=& \frac{\diff}{\diff t} [A \sin (\omega t)] \\
\\
&=& A \omega \cos \omega t
\end{eqnarray*}
となる。

ここで、$\sin ^2 \omega t + \cos ^2 \omega t =1$の関係式より

\begin{eqnarray*}
\sin \omega t = \frac{y}{A} &, &\quad \cos \omega t = \frac{v}{A \omega} \\
\\
\sin ^2 \omega t + \cos ^2 \omega t &=& 1 \\
\\
\left( \frac{y}{A} \right)^2 + \left( \frac{v}{A \omega} \right)^2 &=& 1 \\
\\
\frac{y^2}{A^2} + \frac{v^2}{A^2 \omega ^2} &=& 1
\end{eqnarray*}

となる。

(2)
加速度$a$は

\begin{eqnarray*}
a = \frac{\diff v}{\diff t} &=& \frac{\diff}{\diff t} [A \omega \cos \omega t] \\
\\
&=& -A \omega ^2 \sin \omega t \\
\\
&=& – \omega ^2 y
\end{eqnarray*}
となる。

(3)
(2)より、

\begin{eqnarray*}
a = \frac{\diff v}{\diff t} = \frac{\diff }{\diff t} \left( \frac{\diff y}{\diff t} \right) = \frac{\diff^2 y}{\diff t^2} = – \omega ^2 y
\end{eqnarray*}
であるから、

\begin{eqnarray*}
\ddot{y} &=& – \omega ^2 y \\
\\
\ddot{y} + \omega ^2 y &=& 0
\end{eqnarray*}

となる。

ad

関連記事

2球の正面衝突

問題 2球の正面衝突を考える。 この衝突において運動量が保持することを運動方程式を用いて

記事を読む

摩擦力のある物体の運動

問題 粗い水平面上に置かれた質量$m$の物体がある。 この物体に初速度$v_0$を与えて

記事を読む

微分方程式~自由落下

問題 質量$m$の物体を自由落下させることを考える。 鉛直下向きを正の向きにとり高さ$z$を

記事を読む

斜衝突の運動

問題 質量が等しい2つの質点A, Bがある。 静止しているBに速度$v_0$でAが衝突し、そ

記事を読む

2次元平面の極座標表示における速度及び加速度を単位ベクトルを使って導出する

2次元平面の極座標表示における速度$\vec{v}=(v_r, v_\theta)$及び加速度$\v

記事を読む

単振動のエネルギー

問題 滑らかな水平面上にばねと物体が図のように設置されている。 物体の質量を$m$、ばね定数

記事を読む

単振り子の運動

問題 質量$m$の物体が長さ$l\ $の糸につるされている。 この物体の単振り子運動について

記事を読む

地球の質量と平均密度

問題 地球の質量と平均密度を万有引力の法則を用いて見積もるとする。 地球の半径を$R_\ma

記事を読む

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に長い直線上に電荷が分布している

記事を読む

単振動の微分方程式

問題 単振動の微分方程式 \begin{align*} m\frac{\diff^2 x}

記事を読む

ad

Message

メールアドレスが公開されることはありません。

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

ad

ガンマ関数

問題 ガンマ関数$\Gamma (z)$は \begin{eq

偏微分の関係式の導出

問題 以下の関係式を導出せよ。 (1) $\display

球の表面に一様に帯電した球が作る電場

問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の

一様に帯電した球が作る電場

問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に

→もっと見る

PAGE TOP ↑