極座標の速度
問題
極座標の平面を考える。
速度$\vec{v}$において$r$方向の速度$v_r$と$\theta$方向の速度$v_\theta$を求めよ。

解答
$v_r,v_\theta$を$v_x,v_y$を用いて表すと、
\begin{align*}
v_r&=v_x\cos\theta+v_y\sin\theta\\
v_\theta&=-v_x\sin\theta+v_y\cos\theta
\end{align*}
となる。
ここで
\begin{align*}
\begin{cases}
x=r\cos\theta\\
y=r\sin\theta
\end{cases}
\end{align*}
であるので
\begin{align*}
v_x=\frac{\diff x}{\diff t}=\frac{\diff}{\diff t}(r\cos\theta)&=\frac{\diff r}{\diff t}\cos\theta+r\frac{\diff}{\diff t}(\cos\theta)\\
&=\frac{\diff r}{\diff t}\cos\theta+r(-\sin\theta)\frac{\diff \theta}{\diff t}\\
&=\frac{\diff r}{\diff t}\cos\theta-r\sin\theta\frac{\diff\theta}{\diff t}\\
v_y=\frac{\diff y}{\diff t}=\frac{\diff}{\diff t}(r\sin\theta)&=\frac{\diff r}{\diff t}\sin\theta+r\frac{\diff}{\diff t}(\sin\theta)\\
&=\frac{\diff r}{\diff t}\sin\theta+r\cos\theta\frac{\diff\theta}{\diff t}
\end{align*}
これらを$v_r,v_\theta$の式に代入すると、
\begin{align*}
v_r&=\left(\frac{\diff r}{\diff t}\cos\theta-r\sin\theta\frac{\diff\theta}{\diff t}\right)\cos\theta+\left(\frac{\diff r}{\diff t}\sin\theta+r\cos\theta\frac{\diff\theta}{\diff t}\right)\sin\theta\\
&=\frac{\diff r}{\diff t}\cos^2\theta-r\cos\theta\sin\theta\frac{\diff\theta}{\diff t}+\frac{\diff r}{\diff t}\sin^2\theta+r\cos\theta\sin\theta\frac{\diff\theta}{\diff t}\\
&=\frac{\diff r}{\diff t}(\cos^2\theta+\sin^2\theta)\\
&=\frac{\diff r}{\diff t}\\
v_\theta&=-\left(\frac{\diff r}{\diff t}\cos\theta-r\sin\theta\frac{\diff\theta}{\diff t}\right)\sin\theta+\left(\frac{\diff r}{\diff t}\sin\theta+r\cos\theta\frac{\diff\theta}{\diff t}\right)\cos\theta\\
&=-\frac{\diff r}{\diff t}\cos\theta\sin\theta-r\sin^2\theta\frac{\diff\theta}{\diff t}+\frac{\diff r}{\diff t}\sin\theta\cos\theta+r\cos^2\theta\frac{\diff\theta}{\diff t}\\
&=r\frac{\diff\theta}{\diff t}(\sin^2\theta+\cos^2\theta)\\
&=r\frac{\diff\theta}{\diff t}
\end{align*}
となる。
ad
関連記事
-
-
物体の質量が変化する運動
問題 滑らかな水平面上で後方に単位時間当たり$m_0$の物質を噴出しながら 運動する物体があ
-
-
斜面を滑り降りる運動
問題 摩擦がある水平面となす角 $\theta$ の斜面を質量 $m$ の物体がすべり下り
-
-
無限に長い直線に分布する電荷が作る電場
問題 単位長さあたりの電気量(線密度)が$\rho$である無限に長い直線上に電荷が分布している
-
-
等速円運動の位置、速度、加速度
問題 半径$r_0$、速さ$v_0$で等速円運動をしている物体について 以下の問いに答えよ。
-
-
万有引力と重力加速度
問題 質量を持つ2つの物体の間には万有引力が作用する。 このことから地球の重力$mg$を求め
-
-
単振り子のエネルギー保存
問題 質量$m$の物体が長さ$l$の糸につるされている。 この物体の単振り子運動においてエネ
-
-
固定された滑車の運動
問題 天井に固定された滑車に2つの物体がひもでつながれて運動している。 物体の質量をそれぞれ
-
-
一様に帯電した球が作る電場
問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。以下の問いに答えよ。
ad
- PREV
- 等速円運動の位置、速度、加速度
- NEXT
- 極座標の加速度