等速円運動の位置、速度、加速度
問題
半径$r_0$、速さ$v_0$で等速円運動をしている物体について
以下の問いに答えよ。
(1) 速度ベクトル$\vec{v}$と位置ベクトル$\vec{r}$が直交していることを示せ。
(2) 速度ベクトル$\vec{v}$と加速度ベクトル$\vec{a}$が直交していることを示せ。
(3) 加速度の大きさ$|\vec{a}|$を求めよ。

解答
直交を示す方法として、$\vec{v}\cdot\vec{r}=0$を示す方法を用いる。
$\vec{r}$と$\vec{v}$のそれぞれをそれ自身と内積を取ると
等速円運動より
\begin{align*}
\vec{r}\cdot\vec{r}&=|\vec{r}||\vec{r}|\cos\theta\\
&=|\vec{r}|^2\cdot1 \qquad \mbox{($\theta=0$より)}\\
&=|\vec{r}|^2\\
&=r_0^2\\
\vec{v}\cdot\vec{v}&=|\vec{v}||\vec{v}|\cos\theta\\
&=|\vec{v}|^2\cdot1 \qquad \mbox{($\theta=0$より)}\\
&=|\vec{v}|^2\\
&=v_0^2
\end{align*}
となる。
(1)
$\vec{r}\cdot\vec{r}=r_0^2$の両辺を$t$で微分すると
\begin{align*}
\frac{\diff}{\diff t}(\vec{r}\cdot\vec{r})=\frac{\diff\vec{r}}{\diff t}\cdot\vec{r}+\vec{r}\cdot\frac{\diff\vec{r}}{\diff t}&=\frac{\diff}{\diff t}(r_0^2)\\
2\vec{r}\cdot\frac{\diff\vec{r}}{\diff t}&=0\\
\vec{r}\cdot\vec{v}&=0
\end{align*}
従って、$\vec{r}$と$\vec{v}$は直交している。
(2)
$\vec{v}\cdot\vec{v}=v_0^2$の両辺を$t$で微分すると
\begin{align*}
\frac{\diff}{\diff t}(\vec{v}\cdot\vec{v})=\frac{\diff\vec{v}}{\diff t}\cdot\vec{v}+\vec{v}\cdot\frac{\diff\vec{v}}{\diff t}&=\frac{\diff}{\diff t}(v_0^2)\\
2\vec{v}\cdot\frac{\diff\vec{v}}{\diff t}&=0\\
\vec{v}\cdot\vec{a}&=0
\end{align*}
従って、$\vec{r}$と$\vec{a}$は直交している。
(3)
$\vec{r}\cdot\vec{v}=0$の両辺を$t$で微分すると
\begin{align*}
\frac{\diff}{\diff t}(\vec{r}\cdot\vec{v})=\frac{\diff\vec{r}}{\diff t}\cdot\vec{v}+\vec{r}\cdot\frac{\diff\vec{v}}{\diff t}&=0\\
\vec{v}\cdot\vec{v}+\vec{r}\cdot\vec{a}&=0\\
v_0^2+\vec{r}\cdot\vec{a}&=0\\
\vec{r}\cdot\vec{a}&=-v_0^2\\
|\vec{r}||\vec{a}|\cos\theta&=-v_0^2\\
|\vec{r}||\vec{a}|\cdot -1&=-v_0^2\qquad \mbox{($\theta=\pi$より)} \\
|\vec{a}|&=\frac{v_0^2}{|\vec{r}|}\\
|\vec{a}|&=\frac{v_0^2}{r_0}
\end{align*}
となる。
ad
関連記事
-
-
無限に長い直線に分布する電荷が作る電場
問題 単位長さあたりの電気量(線密度)が$\rho$である無限に長い直線上に電荷が分布している
-
-
物体の質量が変化する運動
問題 滑らかな水平面上で後方に単位時間当たり$m_0$の物質を噴出しながら 運動する物体があ
-
-
外力が$F(t)$が作用する運動
問題 質量$m$の質点に外力$F(t)$を加え、質点を運動させた。 質点の任意の時刻$t$に
-
-
単振動の変位、速度、加速度
問題 なめらかな水平面上に壁からばねが取り付けれられている。 ばねは自然長の状態で静止してい
-
-
地球の質量と平均密度
問題 地球の質量と平均密度を万有引力の法則を用いて見積もるとする。 地球の半径を$R_\ma
-
-
単振動の変位と速度、加速度の関係
問題 単振動の変位 $y(t)$ が \begin{eqnarray*} y(t) =
-
-
2次元平面の極座標表示における速度及び加速度を単位ベクトルを使って導出する
2次元平面の極座標表示における速度$\vec{v}=(v_r, v_\theta)$及び加速度$\v