斜面の摩擦角

問題

水平面上に置かれた粗い板があり、質量$m$の物体が置かれている。
この板を左端$O$を支点として斜面の角度を変化させたとする。
静止摩擦係数を$\mu$としたとき、摩擦角$\theta_0$を表せ。

23-1


解答

斜面に平行な軸を$x$、斜面に垂直な軸を$y$とし、
物体に作用する力を書き込むと、

23a-1

物体に作用する力は重力$mg$、抗力$R$となる。
$x$軸、$y$軸に合わせて力を分解すると、

23a-2

運動方程式は
\begin{align*}
\begin{cases}
ma_x=mg\sin\theta-f\\
ma_y=N-mg\cos\theta
\end{cases}
\end{align*}
と表すことができる。

$a_y=0, f=\mu N$より
\begin{align*}
\begin{cases}
ma_x=mg\sin\theta-\mu N\\
0=N-mg\cos\theta
\end{cases}
\end{align*}
\begin{align*}
\begin{cases}
ma_x=mg\sin\theta-\mu N\\
N=mg\cos\theta
\end{cases}
\end{align*}
となり、
\begin{align*}
ma_x=mg\sin\theta-\mu mg\cos\theta
\end{align*}
となる。

ここで、物体が$x$軸方向に動くためには
\begin{align*}
ma_x=mg\sin\theta-\mu mg\cos\theta>0
\end{align*}
が必要で、その限界の角度を$\theta_0$とすると、
\begin{align*}
mg\sin\theta_0-\mu mg\cos\theta_0&=0\\
\sin\theta_0&=\mu\cos\theta_0\\
\tan\theta_0&=\mu
\end{align*}
となる。
注)
厳密に言うと上式の運動方程式において摩擦係数は
動き始めた瞬間に動摩擦係数と変化することになる。

ad

関連記事

単振り子の運動

問題 質量$m$の物体が長さ$l\ $の糸につるされている。 この物体の単振り子運動について

記事を読む

地球の質量と平均密度

問題 地球の質量と平均密度を万有引力の法則を用いて見積もるとする。 地球の半径を$R_\ma

記事を読む

自由落下運動

問題 質量$m$の物体を自由落下させる。 以下の問いに答えよ。 但し、重力加速度は$g

記事を読む

2次元平面の極座標表示における速度及び加速度を単位ベクトルを使って導出する

2次元平面の極座標表示における速度$\vec{v}=(v_r, v_\theta)$及び加速度$\v

記事を読む

斜面を滑らない条件

問題 水平と角度 $\theta$ をなす荒い斜面上に置かれた物体が滑り出さないための条件を求

記事を読む

摩擦係数の定義

問題 水平面上に質量$m$の物体が置かれている。 水平方向から力$F$を加えて動かそうとした

記事を読む

力のモーメントの計算

問題 以下の図に力$\vec{F}$が作用した場合の力のモーメント$\vec{M}$を計算

記事を読む

斜衝突の運動

問題 質量が等しい2つの質点A, Bがある。 静止しているBに速度$v_0$でAが衝突し、そ

記事を読む

斜面を滑り降りる運動

問題 摩擦がある水平面となす角 $\theta$ の斜面を質量 $m$ の物体がすべり下り

記事を読む

等速円運動の位置、速度、加速度

問題 半径$r_0$、速さ$v_0$で等速円運動をしている物体について 以下の問いに答えよ。

記事を読む

ad

Message

メールアドレスが公開されることはありません。

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

ad

ガンマ関数

問題 ガンマ関数$\Gamma (z)$は \begin{eq

偏微分の関係式の導出

問題 以下の関係式を導出せよ。 (1) $\display

球の表面に一様に帯電した球が作る電場

問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の

一様に帯電した球が作る電場

問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に

→もっと見る

PAGE TOP ↑