斜面の摩擦角

問題

水平面上に置かれた粗い板があり、質量$m$の物体が置かれている。
この板を左端$O$を支点として斜面の角度を変化させたとする。
静止摩擦係数を$\mu$としたとき、摩擦角$\theta_0$を表せ。

23-1


解答

斜面に平行な軸を$x$、斜面に垂直な軸を$y$とし、
物体に作用する力を書き込むと、

23a-1

物体に作用する力は重力$mg$、抗力$R$となる。
$x$軸、$y$軸に合わせて力を分解すると、

23a-2

運動方程式は
\begin{align*}
\begin{cases}
ma_x=mg\sin\theta-f\\
ma_y=N-mg\cos\theta
\end{cases}
\end{align*}
と表すことができる。

$a_y=0, f=\mu N$より
\begin{align*}
\begin{cases}
ma_x=mg\sin\theta-\mu N\\
0=N-mg\cos\theta
\end{cases}
\end{align*}
\begin{align*}
\begin{cases}
ma_x=mg\sin\theta-\mu N\\
N=mg\cos\theta
\end{cases}
\end{align*}
となり、
\begin{align*}
ma_x=mg\sin\theta-\mu mg\cos\theta
\end{align*}
となる。

ここで、物体が$x$軸方向に動くためには
\begin{align*}
ma_x=mg\sin\theta-\mu mg\cos\theta>0
\end{align*}
が必要で、その限界の角度を$\theta_0$とすると、
\begin{align*}
mg\sin\theta_0-\mu mg\cos\theta_0&=0\\
\sin\theta_0&=\mu\cos\theta_0\\
\tan\theta_0&=\mu
\end{align*}
となる。
注)
厳密に言うと上式の運動方程式において摩擦係数は
動き始めた瞬間に動摩擦係数と変化することになる。

ad

関連記事

自由落下運動

問題 質量$m$の物体を自由落下させる。 以下の問いに答えよ。 但し、重力加速度は$g

記事を読む

加速度から速度、変位を求める

問題 $x$軸を運動する質点の加速度が \begin{align*}

記事を読む

ヤングの実験

問題 ヤングの実験を考える。 図のように、平行な2つの幅の狭いスリット$\math

記事を読む

単振動の微分方程式

問題 単振動の微分方程式 \begin{align*} m\frac{\diff^2 x}

記事を読む

地球の質量と平均密度

問題 地球の質量と平均密度を万有引力の法則を用いて見積もるとする。 地球の半径を$R_\ma

記事を読む

万有引力と重力加速度

問題 質量を持つ2つの物体の間には万有引力が作用する。 このことから地球の重力$mg$を求め

記事を読む

固定された滑車の運動

問題 天井に固定された滑車に2つの物体がひもでつながれて運動している。 物体の質量をそれぞれ

記事を読む

等速円運動の位置、速度、加速度

問題 半径$r_0$、速さ$v_0$で等速円運動をしている物体について 以下の問いに答えよ。

記事を読む

極座標の加速度

問題 極座標の平面を考える。 加速度$\vec{a}$において$r$方向の加速度$a_r$と

記事を読む

極座標の速度

問題 極座標の平面を考える。 速度$\vec{v}$において$r$方向の速度$v_r$と$\

記事を読む

ad

Message

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

ad

ガンマ関数

問題 ガンマ関数$\Gamma (z)$は \begin{eq

偏微分の関係式の導出

問題 以下の関係式を導出せよ。 (1) $\display

球の表面に一様に帯電した球が作る電場

問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の

一様に帯電した球が作る電場

問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に

→もっと見る

PAGE TOP ↑