加速度から速度、変位を求める
問題
$x$軸を運動する質点の加速度が
\begin{align*}
a(t)=a_0+a_1t
\end{align*}
で変化している。
$t=0$での速度が$v(0)$であり、位置$x_0$にあったとする。
(1) $t$における質点の速度$v(t)$を求めよ。
(2) $t$における質点の位置$x(t)$を求めよ。
但し、$a_0$, $a_1$は定数であるとする。
解答
(1) 加速度の定義
\begin{align*}
\frac{\diff v}{\diff t}=a(t)
\end{align*}
より
\begin{align*}
\frac{\diff v}{\diff t}=a_0+a_1t
\end{align*}
$t$で積分すると
\begin{align*}
v=a_0t+\frac{1}{2}a_1t^2+C_1 \qquad (C_1 \mbox{ :積分定数)}
\end{align*}
初期条件$v(0)=v_0$より
\begin{align*}
v(0)=a_0\cdot0+\frac{1}{2}a_1\cdot0^2+C_1&=v_0\\
C_1&=v_0
\end{align*}
よって
\begin{align*}
v(t)=v_0+a_0t+\frac{1}{2}a_1t^2
\end{align*}
となる。
(2) 速度の定義
\begin{align*}
m\frac{\diff x}{\diff t}=v(t)
\end{align*}
より、
\begin{align*}
\frac{\diff x}{\diff t}=v_0+a_0t+\frac{1}{2}a_1t^2
\end{align*}
$t$で積分すると
\begin{align*}
x&=v_0t+\frac{1}{2}a_0t^2+\frac{1}{2}a_1\cdot\frac{1}{3}t^3+C_2 \qquad (C_2 \mbox{:積分定数)}\\
&=v_0t+\frac{1}{2}a_0t^2+\frac{1}{6}a_1t^3+C_2
\end{align*}
初期条件$x(0)=x_0$より
\begin{align*}
x(0)=v_0\cdot0+\frac{1}{2}a_0\cdot0^2+\frac{1}{6}a_1 \cdot0^3+C_2 &=x_0 \\
C_2&=x_0
\end{align*}
よって
\begin{align*}
x(t)=x_0+v_0t+\frac{1}{2}a_0t^2+\frac{1}{6}a_1t^3
\end{align*}
となる。
ad
関連記事
-
-
物体が滑り出さない条件
問題 粗い水平面上に置かれた質量$m$の物体に水平と$\alpha$の角をなす方向から 力$
-
-
地球の質量と平均密度
問題 地球の質量と平均密度を万有引力の法則を用いて見積もるとする。 地球の半径を$R_\ma
-
-
一様に帯電した球が作る電場
問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。以下の問いに答えよ。
-
-
2次元平面の極座標表示における速度及び加速度を単位ベクトルを使って導出する
2次元平面の極座標表示における速度$\vec{v}=(v_r, v_\theta)$及び加速度$\v
-
-
力のモーメントの計算
問題 以下の図に力$\vec{F}$が作用した場合の力のモーメント$\vec{M}$を計算
-
-
斜面を滑り下りる運動
問題 水平面をなす角$\theta$の粗い斜面上の点$\mathrm{A}$から物体を初速$v
-
-
外力が$F(t)$が作用する運動
問題 質量$m$の質点に外力$F(t)$を加え、質点を運動させた。 質点の任意の時刻$t$に
-
-
固定された滑車の運動
問題 天井に固定された滑車に2つの物体がひもでつながれて運動している。 物体の質量をそれぞれ
ad
- PREV
- 外力が$F(t)$が作用する運動
- NEXT
- 斜面を滑り降りる運動