外力が$F(t)$が作用する運動

公開日: : 力学, 物理学 ,

問題

質量$m$の質点に外力$F(t)$を加え、質点を運動させた。
質点の任意の時刻$t$における速度$v(t)$を求めよ。
但し、$t=0$での速度$v(0)$は$v_0$であるとする。

(1) 外力$F(t)$が、$F(t)=F_0$ のとき

(2) 外力$F(t)$が、$F(t)=F_0t$ のとき

(3) 外力$F(t)$が、$F(t)=F_0\sin\omega t$ のとき

($F_0$, $\omega$は一定であるとする。)


解答

運動方程式を立てて、速度を計算する。

(1) 運動方程式は

\begin{align*}
ma=F_0\\
m\frac{\diff v}{\diff t}=F_0
\end{align*}
と表すことができる。
よって、
\begin{align*}
\frac{\diff v}{\diff t}=\frac{F_0}{m}
\end{align*}
を$t$で積分して
\begin{align*}
\frac{\diff v}{\diff t}&=\frac{F_0}{m}\\
v&=\frac{F_0}{m}t+C_1 \qquad( C_1 \mbox{:積分定数)}
\end{align*}
となる。
ここで初期条件$v(0)=v_0$より
\begin{align*}
v(0)=\frac{F_0}{m}\cdot 0+C_1&=v_0\\
C_1&=v_0
\end{align*}
従って
\begin{align*}
v(t)=\frac{F_0}{m}t+v_0
\end{align*}
となる。

(2) 運動方程式は
\begin{align*}
ma=F_0 t\\
m\frac{\diff v}{\diff t}=F_0 t
\end{align*}
と表すことができる。
よって、
\begin{align*}
\frac{\diff v}{\diff t}=\frac{F_0}{m} t
\end{align*}
を$t$で積分して
\begin{align*}
\frac{\diff v}{\diff t}&=\frac{F_0}{m} t\\
v&=\frac{F_0}{m}t^2+C_2 \qquad(C_2 \mbox{:積分定数)}\\
&=\frac{1}{2}\frac{F_0}{m}t^2+C_2
\end{align*}
となる。
ここで初期条件$v(0)=v_0$より
\begin{align*}
v(0)=\frac{1}{2}\frac{F_0}{m}\cdot 0^2+C_2&=v_0\\
C_2&=v_0
\end{align*}
従って
\begin{align*}
v(t)=\frac{F_0}{2m}\cdot t^2+v_0
\end{align*}
となる。

(3) 運動方程式は
\begin{align*}
ma=F_0\sin\omega t\\
m\frac{\diff v}{\diff t}=F_0\sin\omega t
\end{align*}
と表すことができる。
よって
\begin{align*}
\frac{\diff v}{\diff t}=\frac{F_0}{m}\sin\omega t
\end{align*}
を$t$で積分して、
\begin{align*}
\frac{\diff v}{\diff t}&=\frac{F_0}{m}\sin\omega t\\
v&=\frac{\diff F_0}{\diff m}\cos\omega t\cdot-\frac{1}{\omega}+C_3 \qquad(C_3 \mbox{:積分定数)}\\
&=-\frac{F_0}{m\omega}\cos\omega t+C_3
\end{align*}
となる。
ここで初期条件$v(0)=v_0$より
\begin{align*}
v(0)=-\frac{F_0}{m\omega}\cos\omega t+C_3&=v_0\\
-\frac{F_0}{m\omega}+C_3&=v_0\\
C_3&=v_0+\frac{F_0}{m\omega}
\end{align*}
従って
\begin{align*}
v(t)&=-\frac{F_0}{m\omega}\cos\omega t+\frac{F_0}{m\omega}+v_0\\
&=\frac{F_0}{m\omega}(1-\cos\omega t)+v_0
\end{align*}
となる。

ad

関連記事

単振り子のエネルギー保存

問題 質量$m$の物体が長さ$l$の糸につるされている。 この物体の単振り子運動においてエネ

記事を読む

自由落下運動

問題 質量$m$の物体を自由落下させる。 以下の問いに答えよ。 但し、重力加速度は$g

記事を読む

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に長い直線上に電荷が分布している

記事を読む

極座標の速度

問題 極座標の平面を考える。 速度$\vec{v}$において$r$方向の速度$v_r$と$\

記事を読む

物体が滑り出さない条件

問題 粗い水平面上に置かれた質量$m$の物体に水平と$\alpha$の角をなす方向から 力$

記事を読む

球の表面に一様に帯電した球が作る電場

問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の球がある。以下の問いに答えよ。

記事を読む

2次元平面の極座標表示における速度及び加速度を単位ベクトルを使って導出する

2次元平面の極座標表示における速度$\vec{v}=(v_r, v_\theta)$及び加速度$\v

記事を読む

接触した物体の運動

問題 滑らかな水平面上に2つの物体$\mathrm{A}$,$\mathrm{B}$が接触して

記事を読む

摩擦力のある物体の運動

問題 粗い水平面上に置かれた質量$m$の物体がある。 この物体に初速度$v_0$を与えて

記事を読む

斜衝突の運動

問題 質量が等しい2つの質点A, Bがある。 静止しているBに速度$v_0$でAが衝突し、そ

記事を読む

ad

Message

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

ad

ガンマ関数

問題 ガンマ関数$\Gamma (z)$は \begin{eq

偏微分の関係式の導出

問題 以下の関係式を導出せよ。 (1) $\display

球の表面に一様に帯電した球が作る電場

問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の

一様に帯電した球が作る電場

問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に

→もっと見る

PAGE TOP ↑