外力が$F(t)$が作用する運動

公開日: : 力学, 物理学 ,

問題

質量$m$の質点に外力$F(t)$を加え、質点を運動させた。
質点の任意の時刻$t$における速度$v(t)$を求めよ。
但し、$t=0$での速度$v(0)$は$v_0$であるとする。

(1) 外力$F(t)$が、$F(t)=F_0$ のとき

(2) 外力$F(t)$が、$F(t)=F_0t$ のとき

(3) 外力$F(t)$が、$F(t)=F_0\sin\omega t$ のとき

($F_0$, $\omega$は一定であるとする。)


解答

運動方程式を立てて、速度を計算する。

(1) 運動方程式は

\begin{align*}
ma=F_0\\
m\frac{\diff v}{\diff t}=F_0
\end{align*}
と表すことができる。
よって、
\begin{align*}
\frac{\diff v}{\diff t}=\frac{F_0}{m}
\end{align*}
を$t$で積分して
\begin{align*}
\frac{\diff v}{\diff t}&=\frac{F_0}{m}\\
v&=\frac{F_0}{m}t+C_1 \qquad( C_1 \mbox{:積分定数)}
\end{align*}
となる。
ここで初期条件$v(0)=v_0$より
\begin{align*}
v(0)=\frac{F_0}{m}\cdot 0+C_1&=v_0\\
C_1&=v_0
\end{align*}
従って
\begin{align*}
v(t)=\frac{F_0}{m}t+v_0
\end{align*}
となる。

(2) 運動方程式は
\begin{align*}
ma=F_0 t\\
m\frac{\diff v}{\diff t}=F_0 t
\end{align*}
と表すことができる。
よって、
\begin{align*}
\frac{\diff v}{\diff t}=\frac{F_0}{m} t
\end{align*}
を$t$で積分して
\begin{align*}
\frac{\diff v}{\diff t}&=\frac{F_0}{m} t\\
v&=\frac{F_0}{m}t^2+C_2 \qquad(C_2 \mbox{:積分定数)}\\
&=\frac{1}{2}\frac{F_0}{m}t^2+C_2
\end{align*}
となる。
ここで初期条件$v(0)=v_0$より
\begin{align*}
v(0)=\frac{1}{2}\frac{F_0}{m}\cdot 0^2+C_2&=v_0\\
C_2&=v_0
\end{align*}
従って
\begin{align*}
v(t)=\frac{F_0}{2m}\cdot t^2+v_0
\end{align*}
となる。

(3) 運動方程式は
\begin{align*}
ma=F_0\sin\omega t\\
m\frac{\diff v}{\diff t}=F_0\sin\omega t
\end{align*}
と表すことができる。
よって
\begin{align*}
\frac{\diff v}{\diff t}=\frac{F_0}{m}\sin\omega t
\end{align*}
を$t$で積分して、
\begin{align*}
\frac{\diff v}{\diff t}&=\frac{F_0}{m}\sin\omega t\\
v&=\frac{\diff F_0}{\diff m}\cos\omega t\cdot-\frac{1}{\omega}+C_3 \qquad(C_3 \mbox{:積分定数)}\\
&=-\frac{F_0}{m\omega}\cos\omega t+C_3
\end{align*}
となる。
ここで初期条件$v(0)=v_0$より
\begin{align*}
v(0)=-\frac{F_0}{m\omega}\cos\omega t+C_3&=v_0\\
-\frac{F_0}{m\omega}+C_3&=v_0\\
C_3&=v_0+\frac{F_0}{m\omega}
\end{align*}
従って
\begin{align*}
v(t)&=-\frac{F_0}{m\omega}\cos\omega t+\frac{F_0}{m\omega}+v_0\\
&=\frac{F_0}{m\omega}(1-\cos\omega t)+v_0
\end{align*}
となる。

ad

関連記事

2次元平面の極座標表示における速度及び加速度を単位ベクトルを使って導出する

2次元平面の極座標表示における速度$\vec{v}=(v_r, v_\theta)$及び加速度$\v

記事を読む

極座標の加速度

問題 極座標の平面を考える。 加速度$\vec{a}$において$r$方向の加速度$a_r$と

記事を読む

ヤングの実験

問題 ヤングの実験を考える。 図のように、平行な2つの幅の狭いスリット$\math

記事を読む

単振動の変位と速度、加速度の関係

問題 単振動の変位 $y(t)$ が \begin{eqnarray*} y(t) =

記事を読む

射法投射と鉛直投げ上げ

問題 質量$m$の質点が初速度$v_0$で投げ出される運動を考える。 鉛直方向に投げた場合の

記事を読む

加速度から速度、変位を求める

問題 $x$軸を運動する質点の加速度が \begin{align*}

記事を読む

接触した物体の運動

問題 滑らかな水平面上に2つの物体$\mathrm{A}$,$\mathrm{B}$が接触して

記事を読む

地球の質量と平均密度

問題 地球の質量と平均密度を万有引力の法則を用いて見積もるとする。 地球の半径を$R_\ma

記事を読む

単振動のエネルギー

問題 滑らかな水平面上にばねと物体が図のように設置されている。 物体の質量を$m$、ばね定数

記事を読む

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に長い直線上に電荷が分布している

記事を読む

ad

Message

メールアドレスが公開されることはありません。

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

ad

ガンマ関数

問題 ガンマ関数$\Gamma (z)$は \begin{eq

偏微分の関係式の導出

問題 以下の関係式を導出せよ。 (1) $\display

球の表面に一様に帯電した球が作る電場

問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の

一様に帯電した球が作る電場

問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に

→もっと見る

PAGE TOP ↑