一様に帯電した球が作る電場

公開日: : 物理学, 電磁気学 , , ,

問題

一様な電荷密度$\rho$で帯電した半径$R$の球がある。以下の問いに答えよ。

(1) この球の中心からの距離$r \ (\ge R)$での電場の大きさ$E(r)$を求めよ。

(2) この球の中心からの距離$r \ (\le R)$での電場の大きさ$E(r)$を求めよ。

(3) 球の内外につくる静電場を距離$r$の関数としてグラフを書け。


解答

(1)
$r \ (\ge R)$の場合、ガウスの法則を適用する閉曲面を図のように半径$r$の球(赤の点線)を想定する。

このとき、閉曲面内の電気量$Q$は

\begin{eqnarray*}
Q &=& \int_V \rho \diff V \\
\\
&=& \frac{4}{3}\pi R^3 \rho
\end{eqnarray*}

である。

よって、この円筒(閉曲面)に対するガウスの法則は

\begin{eqnarray*}
\int_S \vec{E}\cdot \vec{n} ds &=& \frac{Q}{\varepsilon_0} \\
\\
E(r) 4\pi r^2 &=& \frac{1}{\varepsilon_0} \frac{4}{3}\pi R^3 \rho \\
\\
E(r) &=& \frac{\rho}{3 \varepsilon_0} \frac{R^3}{r^2}
\end{eqnarray*}

となる。

(2)
$r \ (\le R)$の場合、ガウスの法則を適用する閉曲面を図のように半径$r$の球(赤の点線)を想定する。

このとき、閉曲面内の電気量$Q$は

\begin{eqnarray*}
Q &=& \int_V \rho \diff V \\
\\
&=& \frac{4}{3}\pi r^3 \rho
\end{eqnarray*}

である。

よって、この円筒(閉曲面)に対するガウスの法則は

\begin{eqnarray*}
\int_S \vec{E}\cdot \vec{n} ds &=& \frac{Q}{\varepsilon_0}\\
\\
E(r) 4\pi r^2 &=& \frac{1}{\varepsilon_0} \frac{4}{3}\pi r^3 \rho \\
\\
E(r) &=& \frac{\rho}{3 \varepsilon_0} r
\end{eqnarray*}

となる。

(3)
(1),(2)を$r$の関数としてグラフにすると

となる。

ad

関連記事

摩擦係数の定義

問題 水平面上に質量$m$の物体が置かれている。 水平方向から力$F$を加えて動かそうとした

記事を読む

加速度から速度、変位を求める

問題 $x$軸を運動する質点の加速度が \begin{align*}

記事を読む

万有引力と重力加速度

問題 質量を持つ2つの物体の間には万有引力が作用する。 このことから地球の重力$mg$を求め

記事を読む

力のモーメントの計算

問題 以下の図に力$\vec{F}$が作用した場合の力のモーメント$\vec{M}$を計算

記事を読む

外力が$F(t)$が作用する運動

問題 質量$m$の質点に外力$F(t)$を加え、質点を運動させた。 質点の任意の時刻$t$に

記事を読む

接触した物体の運動

問題 滑らかな水平面上に2つの物体$\mathrm{A}$,$\mathrm{B}$が接触して

記事を読む

単振り子のエネルギー保存

問題 質量$m$の物体が長さ$l$の糸につるされている。 この物体の単振り子運動においてエネ

記事を読む

斜面を滑り下りる運動

問題 水平面をなす角$\theta$の粗い斜面上の点$\mathrm{A}$から物体を初速$v

記事を読む

単振動のエネルギー

問題 滑らかな水平面上にばねと物体が図のように設置されている。 物体の質量を$m$、ばね定数

記事を読む

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に長い直線上に電荷が分布している

記事を読む

ad

Message

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

ad

ガンマ関数

問題 ガンマ関数$\Gamma (z)$は \begin{eq

偏微分の関係式の導出

問題 以下の関係式を導出せよ。 (1) $\display

球の表面に一様に帯電した球が作る電場

問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の

一様に帯電した球が作る電場

問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に

→もっと見る

PAGE TOP ↑