射法投射と鉛直投げ上げ

問題

質量$m$の質点が初速度$v_0$で投げ出される運動を考える。
鉛直方向に投げた場合の最高点と、斜方に投げ出された場合の水平到達距離が
等しくなるための方向を求めよ。

25-1


解答

2つの運動の組み合わせの問題である。
それぞれの運動について考えればよい。
まずは鉛直投げ上げにおいて作図し、作用する力を書き込むと

25a-1

作用する力は重力$mg$のみである。
従って、運動方程式は
\begin{align*}
ma_y&=-mg\\
m\frac{\diff v_y}{\diff t}&=-mg
\end{align*}
となる。

速度$v_y$は
\begin{align*}
\frac{\diff v_y}{\diff t}&=-g\\
v_y&=-gt+C_1
\end{align*}
となる。$t=0$で$v_y=v_0$なので、
\begin{align*}
v_y(0)=-g\cdot 0+C_1&=v_0\\
C_1&=v_0
\end{align*}
よって
\begin{align*}
v_y(t)=-gt+v_0
\end{align*}
となる。

変位$y$は
\begin{align*}
v_y(t)=\frac{\diff y}{\diff t}&=-gt+v_0\\
y&=-gt^2\cdot\frac{1}{2}+v_0t+C_2
\end{align*}
となる。$t=0$で$y=0$なので
\begin{align*}
y(0)=-\frac{1}{2}g\cdot 0^2+v_0\cdot 0+C_2&=0\\
C_2&=0
\end{align*}
よって
\begin{align*}
y(t)=-\frac{1}{2}gt^2+v_0t
\end{align*}
となる。

最高点となる時間を$t_1$とすると、
\begin{align*}
v_y(t_1)=-gt_1+v_0&=0\\
t_1&=\frac{v_0}{g}
\end{align*}
である。

よって最高点$y(t_1)$は
\begin{align*}
y(t_1)=-\frac{1}{2}gt_1+v_0 t_1&=-\frac{1}{2}g\left(\frac{v_0}{g}\right)^2+v_0\frac{v_0}{g}\\
\\
&=-\frac{v_0^2}{2g}+\frac{v_0^2}{g}\\
\\
&=\frac{v_0^2}{2g}
\end{align*}
となる。

一方、斜方投射について作図をし、作用する力を書き込むと、

25a-2

作用する力は重力$mg$のみである。
従って、運動方程式は
\begin{align*}
\begin{cases}
ma_x=0\\
ma_y=-mg
\end{cases}
\end{align*}
となる。

初期条件において、初速度は$v_0$であるので
$x$軸、$y$軸に分解すると

25a-3

となる。

運動方程式より速度$v_x$は
\begin{align*}
a_x=\frac{\diff v_x}{\diff t}&=0\\
v_x&=C_3
\end{align*}
となる。$t=0$で$v_x=v_0\cos\theta$なので
\begin{align*}
v_x(0)=C_3=v_0\cos\theta
\end{align*}
より
\begin{align*}
v_x(t)=v_0\cos\theta
\end{align*}
となる。

変位$x$は
\begin{align*}
v_x=\frac{\diff x}{\diff t}&=v_0\cos\theta\\
x&=v_0\cos\theta\cdot t+C_4
\end{align*}
となる。$t=0$で$x=0$なので
\begin{align*}
x(0)=v_0\cos\theta\cdot 0+C_4&=0\\
C_4&=0
\end{align*}
よって
\begin{align*}
x(t)=v_0\cos\theta\cdot t
\end{align*}
となる。

また、速度$v_y$は
\begin{align*}
a_y=\frac{\diff v_y}{\diff t}&=-g\\
v_y&=-gt+C_5
\end{align*}
となる。$t=0$で$v_y=v_0\sin\theta$なので
\begin{align*}
v_y(0)=-g\cdot 0+C_5&=v_0\sin\theta\\
C_5&=v_0\sin\theta
\end{align*}
よって
\begin{align*}
v_y(t)=-gt+v_0\sin\theta
\end{align*}
となる。

25a-2

作用する力は重力$mg$のみである。
従って、運動方程式は
\begin{align*}
\begin{cases}
ma_x=0\\
ma_y=-mg
\end{cases}
\end{align*}
となる。

初期条件において、初速度は$v_0$であるので
$x$軸、$y$軸に分解すると

25a-3

となる。

運動方程式より速度$v_x$は
\begin{align*}
a_x=\frac{\diff v_x}{\diff t}&=0\\
v_x&=C_3
\end{align*}
となる。$t=0$で$v_x=v_0\cos\theta$なので
\begin{align*}
v_x(0)=C_3=v_0\cos\theta
\end{align*}
より
\begin{align*}
v_x(t)=v_0\cos\theta
\end{align*}
となる。

変位$x$は
\begin{align*}
v_x=\frac{\diff x}{\diff t}&=v_0\cos\theta\\
x&=v_0\cos\theta\cdot t+C_4
\end{align*}
となる。$t=0$で$x=0$なので
\begin{align*}
x(0)=v_0\cos\theta\cdot 0+C_4&=0\\
C_4&=0
\end{align*}
よって
\begin{align*}
x(t)=v_0\cos\theta\cdot t
\end{align*}
となる。

また、速度$v_y$は
\begin{align*}
a_y=\frac{\diff v_y}{\diff t}&=-g\\
v_y&=-gt+C_5
\end{align*}
となる。$t=0$で$v_y=v_0\sin\theta$なので
\begin{align*}
v_y(0)=-g\cdot 0+C_5&=v_0\sin\theta\\
C_5&=v_0\sin\theta
\end{align*}
よって
\begin{align*}
v_y(t)=-gt+v_0\sin\theta
\end{align*}
となる。

ad

関連記事

万有引力と重力加速度

問題 質量を持つ2つの物体の間には万有引力が作用する。 このことから地球の重力$mg$を求め

記事を読む

単振り子の運動

問題 質量$m$の物体が長さ$l\ $の糸につるされている。 この物体の単振り子運動について

記事を読む

2球の正面衝突

問題 2球の正面衝突を考える。 この衝突において運動量が保持することを運動方程式を用いて

記事を読む

単振動のエネルギー

問題 滑らかな水平面上にばねと物体が図のように設置されている。 物体の質量を$m$、ばね定数

記事を読む

単振動の変位、速度、加速度

問題 なめらかな水平面上に壁からばねが取り付けれられている。 ばねは自然長の状態で静止してい

記事を読む

一様に帯電した球が作る電場

問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。以下の問いに答えよ。

記事を読む

単振動の変位と速度、加速度の関係

問題 単振動の変位 $y(t)$ が \begin{eqnarray*} y(t) =

記事を読む

単振動の微分方程式

問題 単振動の微分方程式 \begin{align*} m\frac{\diff^2 x}

記事を読む

自由落下運動

問題 質量$m$の物体を自由落下させる。 以下の問いに答えよ。 但し、重力加速度は$g

記事を読む

外力が$F(t)$が作用する運動

問題 質量$m$の質点に外力$F(t)$を加え、質点を運動させた。 質点の任意の時刻$t$に

記事を読む

ad

Message

メールアドレスが公開されることはありません。

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

ad

ガンマ関数

問題 ガンマ関数$\Gamma (z)$は \begin{eq

偏微分の関係式の導出

問題 以下の関係式を導出せよ。 (1) $\display

球の表面に一様に帯電した球が作る電場

問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の

一様に帯電した球が作る電場

問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に

→もっと見る

PAGE TOP ↑