単振動のエネルギー

問題

滑らかな水平面上にばねと物体が図のように設置されている。
物体の質量を$m$、ばね定数を$k$とする。
この物体が単振動する時、エネルギー保存則が成立することを運動方程式から導け。




20-1


解答

物体に作用する力は

20a-1

ばねの復元力の大きさ$kx$のみである。
従って運動方程式は
\begin{align*}
m\frac{\diff v}{\diff t}=-kx
\end{align*}
となる。
両辺を$x$で積分すると
\begin{align*}
\int m\frac{\diff v}{\diff t}\diff x&=-\int kx\diff x\\
\int m\frac{\diff v}{\diff t}v\diff t&=-\int kx\diff x\\
\int\frac{\diff}{\diff t}\left(\frac{1}{2}mv^2\right)\diff t&=-\int kx\diff x\\
\int\frac{\diff}{\diff t}\left(\frac{1}{2}mv^2\right)\diff t+\int kx\diff x&=0\\
\frac{1}{2}mv^2+\frac{1}{2}kx^2&=C \qquad(C:\mbox{ 積分定数})
\end{align*}
よって運動エネルギーとばねによる弾性エネルギーの和が
常に時間に依らず一定であることを示している。
従って、力学的エネルギーの保存が成立している。

ad

関連記事

物体の質量が変化する運動

問題 滑らかな水平面上で後方に単位時間当たり$m_0$の物質を噴出しながら 運動する物体があ

記事を読む

球の表面に一様に帯電した球が作る電場

問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の球がある。以下の問いに答えよ。

記事を読む

斜面を滑り降りる運動

問題 摩擦がある水平面となす角 $\theta$ の斜面を質量 $m$ の物体がすべり下り

記事を読む

接触した物体の運動

問題 滑らかな水平面上に2つの物体$\mathrm{A}$,$\mathrm{B}$が接触して

記事を読む

力のモーメントの計算

問題 以下の図に力$\vec{F}$が作用した場合の力のモーメント$\vec{M}$を計算

記事を読む

極座標の速度

問題 極座標の平面を考える。 速度$\vec{v}$において$r$方向の速度$v_r$と$\

記事を読む

射法投射と鉛直投げ上げ

問題 質量$m$の質点が初速度$v_0$で投げ出される運動を考える。 鉛直方向に投げた場合の

記事を読む

外力が$F(t)$が作用する運動

問題 質量$m$の質点に外力$F(t)$を加え、質点を運動させた。 質点の任意の時刻$t$に

記事を読む

物体が滑り出さない条件

問題 粗い水平面上に置かれた質量$m$の物体に水平と$\alpha$の角をなす方向から 力$

記事を読む

等速円運動の加速度

問題 質点が原点を中心に半径$r$、角速度$\omega$の等速円運動を行っている。

記事を読む

ad

Message

メールアドレスが公開されることはありません。

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

ad

ガンマ関数

問題 ガンマ関数$\Gamma (z)$は \begin{eq

偏微分の関係式の導出

問題 以下の関係式を導出せよ。 (1) $\display

球の表面に一様に帯電した球が作る電場

問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の

一様に帯電した球が作る電場

問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に

→もっと見る

PAGE TOP ↑