単振動のエネルギー
問題
滑らかな水平面上にばねと物体が図のように設置されている。
物体の質量を$m$、ばね定数を$k$とする。
この物体が単振動する時、エネルギー保存則が成立することを運動方程式から導け。
解答
物体に作用する力は
ばねの復元力の大きさ$kx$のみである。
従って運動方程式は
\begin{align*}
m\frac{\diff v}{\diff t}=-kx
\end{align*}
となる。
両辺を$x$で積分すると
\begin{align*}
\int m\frac{\diff v}{\diff t}\diff x&=-\int kx\diff x\\
\int m\frac{\diff v}{\diff t}v\diff t&=-\int kx\diff x\\
\int\frac{\diff}{\diff t}\left(\frac{1}{2}mv^2\right)\diff t&=-\int kx\diff x\\
\int\frac{\diff}{\diff t}\left(\frac{1}{2}mv^2\right)\diff t+\int kx\diff x&=0\\
\frac{1}{2}mv^2+\frac{1}{2}kx^2&=C \qquad(C:\mbox{ 積分定数})
\end{align*}
よって運動エネルギーとばねによる弾性エネルギーの和が
常に時間に依らず一定であることを示している。
従って、力学的エネルギーの保存が成立している。
ad
関連記事
-
-
物体の質量が変化する運動
問題 滑らかな水平面上で後方に単位時間当たり$m_0$の物質を噴出しながら 運動する物体があ
-
-
球の表面に一様に帯電した球が作る電場
問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の球がある。以下の問いに答えよ。
-
-
斜面を滑り降りる運動
問題 摩擦がある水平面となす角 $\theta$ の斜面を質量 $m$ の物体がすべり下り
-
-
力のモーメントの計算
問題 以下の図に力$\vec{F}$が作用した場合の力のモーメント$\vec{M}$を計算
-
-
射法投射と鉛直投げ上げ
問題 質量$m$の質点が初速度$v_0$で投げ出される運動を考える。 鉛直方向に投げた場合の
-
-
外力が$F(t)$が作用する運動
問題 質量$m$の質点に外力$F(t)$を加え、質点を運動させた。 質点の任意の時刻$t$に
-
-
物体が滑り出さない条件
問題 粗い水平面上に置かれた質量$m$の物体に水平と$\alpha$の角をなす方向から 力$
ad
- PREV
- 斜面を滑り下りる運動
- NEXT
- 微分の定義から導関数を求める