単振動のエネルギー
問題
滑らかな水平面上にばねと物体が図のように設置されている。
物体の質量を$m$、ばね定数を$k$とする。
この物体が単振動する時、エネルギー保存則が成立することを運動方程式から導け。
解答
物体に作用する力は
ばねの復元力の大きさ$kx$のみである。
従って運動方程式は
\begin{align*}
m\frac{\diff v}{\diff t}=-kx
\end{align*}
となる。
両辺を$x$で積分すると
\begin{align*}
\int m\frac{\diff v}{\diff t}\diff x&=-\int kx\diff x\\
\int m\frac{\diff v}{\diff t}v\diff t&=-\int kx\diff x\\
\int\frac{\diff}{\diff t}\left(\frac{1}{2}mv^2\right)\diff t&=-\int kx\diff x\\
\int\frac{\diff}{\diff t}\left(\frac{1}{2}mv^2\right)\diff t+\int kx\diff x&=0\\
\frac{1}{2}mv^2+\frac{1}{2}kx^2&=C \qquad(C:\mbox{ 積分定数})
\end{align*}
よって運動エネルギーとばねによる弾性エネルギーの和が
常に時間に依らず一定であることを示している。
従って、力学的エネルギーの保存が成立している。
ad
関連記事
-
-
マクローリン展開の計算
問題 次の関数$f(x)$をマクローリン級数に展開せよ。 (1) $f(x)=\sin
-
-
外力が$F(t)$が作用する運動
問題 質量$m$の質点に外力$F(t)$を加え、質点を運動させた。 質点の任意の時刻$t$に
-
-
加速度から速度、変位を求める
問題 $x$軸を運動する質点の加速度が \begin{align*}
-
-
2次元平面の極座標表示における速度及び加速度を単位ベクトルを使って導出する
2次元平面の極座標表示における速度$\vec{v}=(v_r, v_\theta)$及び加速度$\v
-
-
斜面を滑り下りる運動
問題 水平面をなす角$\theta$の粗い斜面上の点$\mathrm{A}$から物体を初速$v
-
-
射法投射と鉛直投げ上げ
問題 質量$m$の質点が初速度$v_0$で投げ出される運動を考える。 鉛直方向に投げた場合の
ad
- PREV
- 斜面を滑り下りる運動
- NEXT
- 微分の定義から導関数を求める