マクローリン展開の計算
問題
次の関数$f(x)$をマクローリン級数に展開せよ。
(1) $f(x)=\sin x$
(2) $f(x)=\cos x$
(3) $f(x)=e^x$
解答
関数$f(x)$のマクローリン展開は
\begin{align*}
f(x)=\sum_{n=0}^{\infty}\frac{1}{n!}f^{(n)}(0)x^n
\end{align*}
で与えられる。
(1) \begin{align*}
f(0)&=\sin0=0\\
f'(0)&=\cos0=1\\
f”(0)&=-\sin0=0\\
f”'(0)&=-\cos0=-1
\end{align*}
よって
\begin{align*}
f(x)=\sin x&=0+\frac{1}{1!}x+\frac{0}{2!}x^2+\frac{-1}{3!}x^3+\frac{0}{4!}x^4+\frac{1}{5!}x^5\cdots\\
&=x-\frac{x^3}{3!}+\frac{x^5}{5!}+\cdots+\frac{(-1)^n}{(2n+1)!}x^{2n+1}+\cdots
\end{align*}
となる。
(2) \begin{align*}
f(0)&=\cos0=1\\
f'(0)&=-\sin0=0\\
f”(0)&=-\cos0=-1\\
f”'(0)&=\sin0=0
\end{align*}
よって
\begin{align*}
f(x)=\cos x&=1+\frac{0}{1!}x+\frac{-1}{2!}x^2+\frac{0}{3!}x^3+\frac{1}{4!}x^4+\frac{0}{5!}x^5\cdots\\
&=1-\frac{x^2}{2!}+\frac{x^4}{4!}+\cdots+\frac{(-1)^n}{(2n)!}x^{2n}+\cdots
\end{align*}
となる。
(3) \begin{align*}
f(0)&=e^0=1\\
f'(0)&=e^0=1\\
f”(0)&=e^0=1
\end{align*}
よって
\begin{align*}
f(x)=e^x&=1+\frac{1}{1!}x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\cdots\\
&=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^n}{n!}+\cdots
\end{align*}
となる。
ad
関連記事
-
-
加速度から速度、変位を求める
問題 $x$軸を運動する質点の加速度が \begin{align*}
-
-
一様に帯電した球が作る電場
問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。以下の問いに答えよ。
-
-
密度が一様でない棒の質量
問題 密度が一様でない棒の質量を考える。 この棒の線密度$\rho(x)$が
-
-
地球の質量と平均密度
問題 地球の質量と平均密度を万有引力の法則を用いて見積もるとする。 地球の半径を$R_\ma
-
-
等速円運動の位置、速度、加速度
問題 半径$r_0$、速さ$v_0$で等速円運動をしている物体について 以下の問いに答えよ。
ad
- PREV
- 密度が一様でない棒の質量
- NEXT
- ベクトルの内積