物体の質量が変化する運動

公開日: : 力学, 物理学 , ,

問題

滑らかな水平面上で後方に単位時間当たり$m_0$の物質を噴出しながら
運動する物体がある。物体の初期質量を$M$、初速度を$v_0$とし、噴出物質の速度は
常に0になるように噴出されるものとする。

(1) この運動において運動量が保存されることを示せ。

(2) 時間$t$後の質量$m(t)$を求めよ。

(3) 時間$t$後の速度$v(t)$を求めよ。

(4) 時間$t$後の移動距離$x(t)$を求めよ。


解答

作図をすると


6a-1

(1) 運動方程式は時間$t$後の質量を$m(t)$、速度を$v(t)$とおくと、
\begin{align*}
\frac{\diff}{\diff t}\Bigl(m(t)v(t)\Bigr)=F
\end{align*}
と表すことができる
この運動では外部から力が作用していないので、
\begin{align*}
\frac{\diff}{\diff t}\Bigl(m(t)v(t)\Bigr)=0
\end{align*}
となる。
従って運動量$m(t)v(t)$は時間的に変化しないので
運動量は保存している。

(2) 単位時間あたり$m_0$の質量が減っていくので$t$後には
\begin{align*}
\mbox{減った質量}=m_0t
\end{align*}
と表すことができる。
よって$t$後の質量$m(t)$は
\begin{align*}
m(t)=M-m_0t
\end{align*}
となる。

(3) 運動量が保存しているので、
\begin{align*}
m(t)v(t)=Mv_0
\end{align*}
である。
よって
\begin{align*}
m(t)v(t)&=Mv_0\\
v(t)&=\frac{M}{m(t)}v_0\\
&=\frac{M}{M-m_0t}v_0
\end{align*}
となる。

(4) $v(t)$の両辺を時間0から$t$まで$t$で積分すると、
\begin{align*}
x(t)&=\int_{0}^{t}v(t)\diff t\\
&=\int_{0}^{t}\frac{Mv_0}{M-m_0t}v_0\diff t\\
&=Mv_0\int_{0}^{t}\frac{1}{M-m_0t}v_0\diff t\\
&=Mv_0\left[-\frac{1}{m_0}\cdot\log(M-m_0t)\right]_{0}^{t}\\
&=-\frac{Mv_0}{m_0}\Bigl[\log(M-m_0t)\Bigr]_{0}^{t}\\
&=-\frac{Mv_0}{m_0}\Bigl\{\log(M-m_0t)-\log(M-m_0\cdot0)\Bigr\}\\
&=-\frac{Mv_0}{m_0}\Bigl\{\log(M-m_0t)-\log M\Bigr\}\\
&=-\frac{Mv_0}{m_0}\log\frac{M-m_0t}{M}
\end{align*}
となる。

ad

関連記事

等速円運動の加速度

問題 質点が原点を中心に半径$r$、角速度$\omega$の等速円運動を行っている。

記事を読む

斜面を滑らない条件

問題 水平と角度 $\theta$ をなす荒い斜面上に置かれた物体が滑り出さないための条件を求

記事を読む

地球の質量と平均密度

問題 地球の質量と平均密度を万有引力の法則を用いて見積もるとする。 地球の半径を$R_\ma

記事を読む

2球の正面衝突

問題 2球の正面衝突を考える。 この衝突において運動量が保持することを運動方程式を用いて

記事を読む

斜面を滑り下りる運動

問題 水平面をなす角$\theta$の粗い斜面上の点$\mathrm{A}$から物体を初速$v

記事を読む

接触した物体の運動

問題 滑らかな水平面上に2つの物体$\mathrm{A}$,$\mathrm{B}$が接触して

記事を読む

ヤングの実験

問題 ヤングの実験を考える。 図のように、平行な2つの幅の狭いスリット$\math

記事を読む

極座標の加速度

問題 極座標の平面を考える。 加速度$\vec{a}$において$r$方向の加速度$a_r$と

記事を読む

単振動の変位、速度、加速度

問題 なめらかな水平面上に壁からばねが取り付けれられている。 ばねは自然長の状態で静止してい

記事を読む

摩擦係数の定義

問題 水平面上に質量$m$の物体が置かれている。 水平方向から力$F$を加えて動かそうとした

記事を読む

ad

Message

メールアドレスが公開されることはありません。

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

ad

ガンマ関数

問題 ガンマ関数$\Gamma (z)$は \begin{eq

偏微分の関係式の導出

問題 以下の関係式を導出せよ。 (1) $\display

球の表面に一様に帯電した球が作る電場

問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の

一様に帯電した球が作る電場

問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に

→もっと見る

PAGE TOP ↑