自由落下運動

問題

質量$m$の物体を自由落下させる。
以下の問いに答えよ。
但し、重力加速度は$g$とする。

(1) この運動の運動方程式を記述せよ。

(2) この運動において力学的エネルギーが保存していることを運動方程式から導け。


解答

まずは作図をする。
上向きを正に軸を取ると

5a-1

物体に作用する力を書き込むと

5a-2

(1) 運動方程式は
\begin{align*}
ma&=-mg\\
m\frac{\diff v}{\diff t}&=-mg
\end{align*}
となる。

(2) 運動方程式の両辺を$x$で積分すると
\begin{align*}
m\frac{\diff v}{\diff t}&=-mg\\
\int m\frac{\diff v}{\diff t}\diff x&=-\int mg\diff x
\end{align*}
$\displaystyle v=\frac{\diff x}{\diff t}$より$\diff x=v\diff v$と表せるので
\begin{align*}
\int m\frac{\diff v}{\diff t}v\diff t&=-\int mg\diff x\\
\frac{1}{2}mv^2+C_1&=-mgx+C_2 \qquad(C_1, C_2 \mbox{:積分定数)}\\
\frac{1}{2}mv^2+mgx&=C
\end{align*}
従って、運動エネルギーと位置エネルギーの和が時間によらず
一定であるので力学的エネルギーは保存している。

ad

関連記事

2次元平面の極座標表示における速度及び加速度を単位ベクトルを使って導出する

2次元平面の極座標表示における速度$\vec{v}=(v_r, v_\theta)$及び加速度$\v

記事を読む

射法投射と鉛直投げ上げ

問題 質量$m$の質点が初速度$v_0$で投げ出される運動を考える。 鉛直方向に投げた場合の

記事を読む

物体の質量が変化する運動

問題 滑らかな水平面上で後方に単位時間当たり$m_0$の物質を噴出しながら 運動する物体があ

記事を読む

地球の質量と平均密度

問題 地球の質量と平均密度を万有引力の法則を用いて見積もるとする。 地球の半径を$R_\ma

記事を読む

単振動の変位と速度、加速度の関係

問題 単振動の変位 $y(t)$ が \begin{eqnarray*} y(t) =

記事を読む

等速円運動の位置、速度、加速度

問題 半径$r_0$、速さ$v_0$で等速円運動をしている物体について 以下の問いに答えよ。

記事を読む

等速円運動の加速度

問題 質点が原点を中心に半径$r$、角速度$\omega$の等速円運動を行っている。

記事を読む

ヤングの実験

問題 ヤングの実験を考える。 図のように、平行な2つの幅の狭いスリット$\math

記事を読む

マクローリン展開の計算

問題 次の関数$f(x)$をマクローリン級数に展開せよ。 (1) $f(x)=\sin

記事を読む

接触した物体の運動

問題 滑らかな水平面上に2つの物体$\mathrm{A}$,$\mathrm{B}$が接触して

記事を読む

ad

Message

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

ad

ガンマ関数

問題 ガンマ関数$\Gamma (z)$は \begin{eq

偏微分の関係式の導出

問題 以下の関係式を導出せよ。 (1) $\display

球の表面に一様に帯電した球が作る電場

問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の

一様に帯電した球が作る電場

問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に

→もっと見る

PAGE TOP ↑