摩擦係数の定義
問題
水平面上に質量$m$の物体が置かれている。
水平方向から力$F$を加えて動かそうとしたところ
力が$f_0$を超えたときに動き出した。
(1) 面と物体の間の静止摩擦係数$\mu_0$を求めよ。
(2) 力$F$と摩擦係数$\mu$の関係をグラフで表せ。
解答
$x$軸,$y$軸を設定し、作用する力を書き込むと、
物体に作用する力は、重力$mg$、抗力$R$、加えた力$F$の3つとなる。
$x$軸、$y$軸に合わせて力を分解すると、
となる。
従って、運動方程式は
\begin{align*}
\begin{cases}
ma_x=F-f\\
ma_y=N-mg
\end{cases}
\end{align*}
と表すことができる。
$a_y=0$より
\begin{align*}
0&=N-mg\\
N&=mg
\end{align*}
となる。
摩擦係数の定義は
\begin{align*}
\mu=\frac{f}{N}=\tan\theta
\end{align*}
である。
静止している間は$|F|=|f|$である。
$|F|=f_0$となったときの摩擦係数は
\begin{align*}
\mu=\frac{f_0}{N}=\frac{f_0}{mg}
\end{align*}
と表される。
(2) 力Fと摩擦係数$\mu$の関係は
となる。
ad
関連記事
-
-
マクローリン展開の計算
問題 次の関数$f(x)$をマクローリン級数に展開せよ。 (1) $f(x)=\sin
-
-
地球の質量と平均密度
問題 地球の質量と平均密度を万有引力の法則を用いて見積もるとする。 地球の半径を$R_\ma
-
-
外力が$F(t)$が作用する運動
問題 質量$m$の質点に外力$F(t)$を加え、質点を運動させた。 質点の任意の時刻$t$に
-
-
斜面を滑り下りる運動
問題 水平面をなす角$\theta$の粗い斜面上の点$\mathrm{A}$から物体を初速$v
-
-
等速円運動の位置、速度、加速度
問題 半径$r_0$、速さ$v_0$で等速円運動をしている物体について 以下の問いに答えよ。
-
-
物体が滑り出さない条件
問題 粗い水平面上に置かれた質量$m$の物体に水平と$\alpha$の角をなす方向から 力$
-
-
万有引力と重力加速度
問題 質量を持つ2つの物体の間には万有引力が作用する。 このことから地球の重力$mg$を求め
-
-
2次元平面の極座標表示における速度及び加速度を単位ベクトルを使って導出する
2次元平面の極座標表示における速度$\vec{v}=(v_r, v_\theta)$及び加速度$\v
ad
- PREV
- 万有引力と重力加速度
- NEXT
- 地球の質量と平均密度