極座標の速度

公開日: : 力学, 物理学 , ,

問題

極座標の平面を考える。
速度$\vec{v}$において$r$方向の速度$v_r$と$\theta$方向の速度$v_\theta$を求めよ。


35-1


解答

$v_r,v_\theta$を$v_x,v_y$を用いて表すと、
\begin{align*}
v_r&=v_x\cos\theta+v_y\sin\theta\\
v_\theta&=-v_x\sin\theta+v_y\cos\theta
\end{align*}
となる。
ここで
\begin{align*}
\begin{cases}
x=r\cos\theta\\
y=r\sin\theta
\end{cases}
\end{align*}
であるので
\begin{align*}
v_x=\frac{\diff x}{\diff t}=\frac{\diff}{\diff t}(r\cos\theta)&=\frac{\diff r}{\diff t}\cos\theta+r\frac{\diff}{\diff t}(\cos\theta)\\
&=\frac{\diff r}{\diff t}\cos\theta+r(-\sin\theta)\frac{\diff \theta}{\diff t}\\
&=\frac{\diff r}{\diff t}\cos\theta-r\sin\theta\frac{\diff\theta}{\diff t}\\
v_y=\frac{\diff y}{\diff t}=\frac{\diff}{\diff t}(r\sin\theta)&=\frac{\diff r}{\diff t}\sin\theta+r\frac{\diff}{\diff t}(\sin\theta)\\
&=\frac{\diff r}{\diff t}\sin\theta+r\cos\theta\frac{\diff\theta}{\diff t}
\end{align*}
これらを$v_r,v_\theta$の式に代入すると、
\begin{align*}
v_r&=\left(\frac{\diff r}{\diff t}\cos\theta-r\sin\theta\frac{\diff\theta}{\diff t}\right)\cos\theta+\left(\frac{\diff r}{\diff t}\sin\theta+r\cos\theta\frac{\diff\theta}{\diff t}\right)\sin\theta\\
&=\frac{\diff r}{\diff t}\cos^2\theta-r\cos\theta\sin\theta\frac{\diff\theta}{\diff t}+\frac{\diff r}{\diff t}\sin^2\theta+r\cos\theta\sin\theta\frac{\diff\theta}{\diff t}\\
&=\frac{\diff r}{\diff t}(\cos^2\theta+\sin^2\theta)\\
&=\frac{\diff r}{\diff t}\\
v_\theta&=-\left(\frac{\diff r}{\diff t}\cos\theta-r\sin\theta\frac{\diff\theta}{\diff t}\right)\sin\theta+\left(\frac{\diff r}{\diff t}\sin\theta+r\cos\theta\frac{\diff\theta}{\diff t}\right)\cos\theta\\
&=-\frac{\diff r}{\diff t}\cos\theta\sin\theta-r\sin^2\theta\frac{\diff\theta}{\diff t}+\frac{\diff r}{\diff t}\sin\theta\cos\theta+r\cos^2\theta\frac{\diff\theta}{\diff t}\\
&=r\frac{\diff\theta}{\diff t}(\sin^2\theta+\cos^2\theta)\\
&=r\frac{\diff\theta}{\diff t}
\end{align*}
となる。

ad

関連記事

極座標の加速度

問題 極座標の平面を考える。 加速度$\vec{a}$において$r$方向の加速度$a_r$と

記事を読む

外力が$F(t)$が作用する運動

問題 質量$m$の質点に外力$F(t)$を加え、質点を運動させた。 質点の任意の時刻$t$に

記事を読む

単振動の微分方程式

問題 単振動の微分方程式 \begin{align*} m\frac{\diff^2 x}

記事を読む

単振動の変位、速度、加速度

問題 なめらかな水平面上に壁からばねが取り付けれられている。 ばねは自然長の状態で静止してい

記事を読む

2次元平面の極座標表示における速度及び加速度を単位ベクトルを使って導出する

2次元平面の極座標表示における速度$\vec{v}=(v_r, v_\theta)$及び加速度$\v

記事を読む

斜衝突の運動

問題 質量が等しい2つの質点A, Bがある。 静止しているBに速度$v_0$でAが衝突し、そ

記事を読む

単振り子の運動

問題 質量$m$の物体が長さ$l\ $の糸につるされている。 この物体の単振り子運動について

記事を読む

単振動の変位と速度、加速度の関係

問題 単振動の変位 $y(t)$ が \begin{eqnarray*} y(t) =

記事を読む

一様に帯電した球が作る電場

問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。以下の問いに答えよ。

記事を読む

接触した物体の運動

問題 滑らかな水平面上に2つの物体$\mathrm{A}$,$\mathrm{B}$が接触して

記事を読む

ad

Message

メールアドレスが公開されることはありません。

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

ad

ガンマ関数

問題 ガンマ関数$\Gamma (z)$は \begin{eq

偏微分の関係式の導出

問題 以下の関係式を導出せよ。 (1) $\display

球の表面に一様に帯電した球が作る電場

問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の

一様に帯電した球が作る電場

問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に

→もっと見る

PAGE TOP ↑