物体が滑り出さない条件

公開日: : 力学, 物理学 , ,

問題

粗い水平面上に置かれた質量$m$の物体に水平と$\alpha$の角をなす方向から
力$F$を加えたとする。物体が滑り出さないための力$F$の条件を求めよ。
但し、静止摩擦係数を$\mu$とする。

22-1


解答

$x,y$軸を設定し、物体に作用する力を書き込むと

22a-1

物体に作用する力は重力$mg$、抗力$R$、加える力$F$となる。
$x,y$軸に合わせて力を分解すると

22a-2

運動方程式は
\begin{align*}
\begin{cases}
ma_x=F\cos\alpha-f\\
ma_y=N-mg-F\sin\alpha
\end{cases}
\end{align*}
と表すことができる。

$a_y=0$より
\begin{align*}
0&=N-mg-F\sin\alpha\\
N&=mg+F\sin\alpha
\end{align*}
となる。

物体が動き出さないためには$x$軸において
\begin{align*}
F\cos\alpha-f<0 \end{align*} のときである。

$f=\mu N$より

\begin{align*}
F\cos\alpha-\mu(mg+F\sin\alpha)&<0\\ F\cos\alpha-\mu mg-\mu F\sin\alpha&<0\\ F(\cos\alpha-\mu \sin\alpha)-\mu mg&<0\\ -F(\mu \sin\alpha-\cos\alpha)-\mu mg&<0\\ F(\mu \sin\alpha-\cos\alpha)+\mu mg&>0
\end{align*}

ここで$\mu mg>0$であるため、$F$の係数である$\mu\sin\alpha-\cos\alpha$が正であれば、
$F$の大きさによらず滑り出さない。

即ち
\begin{align*}
\mu\sin\alpha-\cos\alpha&>0\\
\tan\alpha&>\frac{1}{\mu}
\end{align*}
が条件となる。

\begin{align*}
\tan\alpha<\frac{1}{\mu} \end{align*} の場合は$F$の大きさを考える必要があり、 \begin{align*} F(\cos\alpha-\mu\sin\alpha)-\mu mg&<0\\ F(\cos\alpha-\mu\sin\alpha)&<\mu mg\\ \\ F&<\frac{\mu mg}{\cos\alpha-\mu\sin\alpha} \end{align*} であれば滑り出さないことになる。

ad

関連記事

単振動の微分方程式

問題 単振動の微分方程式 \begin{align*} m\frac{\diff^2 x}

記事を読む

射法投射と鉛直投げ上げ

問題 質量$m$の質点が初速度$v_0$で投げ出される運動を考える。 鉛直方向に投げた場合の

記事を読む

2次元平面の極座標表示における速度及び加速度を単位ベクトルを使って導出する

2次元平面の極座標表示における速度$\vec{v}=(v_r, v_\theta)$及び加速度$\v

記事を読む

摩擦力のある物体の運動

問題 粗い水平面上に置かれた質量$m$の物体がある。 この物体に初速度$v_0$を与えて

記事を読む

斜面を滑らない条件

問題 水平と角度 $\theta$ をなす荒い斜面上に置かれた物体が滑り出さないための条件を求

記事を読む

極座標の速度

問題 極座標の平面を考える。 速度$\vec{v}$において$r$方向の速度$v_r$と$\

記事を読む

外力が$F(t)$が作用する運動

問題 質量$m$の質点に外力$F(t)$を加え、質点を運動させた。 質点の任意の時刻$t$に

記事を読む

摩擦係数の定義

問題 水平面上に質量$m$の物体が置かれている。 水平方向から力$F$を加えて動かそうとした

記事を読む

2球の正面衝突

問題 2球の正面衝突を考える。 この衝突において運動量が保持することを運動方程式を用いて

記事を読む

マクローリン展開の計算

問題 次の関数$f(x)$をマクローリン級数に展開せよ。 (1) $f(x)=\sin

記事を読む

ad

Message

メールアドレスが公開されることはありません。

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

ad

ガンマ関数

問題 ガンマ関数$\Gamma (z)$は \begin{eq

偏微分の関係式の導出

問題 以下の関係式を導出せよ。 (1) $\display

球の表面に一様に帯電した球が作る電場

問題 一様な面密度$\sigma$で球表面に帯電した半径$R$の

一様に帯電した球が作る電場

問題 一様な電荷密度$\rho$で帯電した半径$R$の球がある。

無限に長い直線に分布する電荷が作る電場

問題 単位長さあたりの電気量(線密度)が$\rho$である無限に

→もっと見る

PAGE TOP ↑